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ABSTRACT

A model is presented to compute the turbulent kinetic energy dissipation length scale /, in a stably stratified
shear flow. The expression for /, is derived from solving the spectral balance equation for the turbulent kinetic
energy. The buoyancy spectrum entering such equation is constructed using a Lagrangian timescale with mod-
ifications due to stratification. The final result for [, is given in algebraic form as a function of the Froude number
Fr and the flux Richardson number Ry, /, = L(Fr, R;). The model predicts that for R; < Ry, I, decreases with
stratification or shear; for R, > R,., which may occur in subgrid-scale models, /, increases with stratification.
An attractive feature of the present model is that it encompasses, as special cases, some seemingly different
models for [, that have been proposed in the past by Deardorff, Hunt et al., Weinstock, and Canuto and Minotti.
An alternative form for the dissipation rate ¢ is also discussed that may be useful when one uses a prognostic
equation for the heat flux, The present model is applicable to subgrid-scale models, which are needed in large
eddy simulations (LES ), as well as to ensemble average models.

The model is applied to predict the variation of I, with height z in the planetary boundary layer. The resulting
I, versus z profile reproduces very closely the nonmonotonic profile of /, exhibited by many LES calculations,
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beginning with the one by Deardorff in 1974.

1. Introduction

The availability of large computational facilities has
provided a new tool to study turbulent flow, the LES
(large eddy simulation), whose conceptual basis rests
on the fact that large eddies contain most of the energy,
do most of the transporting, are diffusive, anisotropic,
long-lived, inhomogeneous, ordered, and dependent on
the boundary conditions (Schumann 1991) —qualifi-
cations that make it difficult to model them analytically,
thus the suggestion to treat them numerically. How-
ever, since the number of grid points (or degrees of
freedom) N of a turbulent flow, characterized by a
Reynolds number Re, grows as N ~ Re®*, it is not
possible to resolve all the scales. Unresolved scales
smaller than the smallest resolved scale A must be
modeled. Since small scales are viewed as dissipative,
isotropic, short-lived, homogeneous, random, and uni-
versal, they are thought to be more amenable to theo-
retical modeling. Thus, the fusion of an LES with an
SGS (subgrid scale) model is considered to be a pow-
erful new tool. This expectation has been largely ful-
filled (e.g., Moeng and Wyngaard 1989; Schmidt and
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Schumann 1989; Mason and Derbyshire 1990; Nieuw-
stadt 1990). In the case of stable stratification, how-
ever, where the physics differs considerably from the
case of unstable stratification, there are still severe
doubts as to whether an SGS model is actually avail-
able, or, to be more precise, as to whether the physical
features of the unresolved scales as envisaged above
are correct. For example, if one considers that negative
buoyancy strongly hinders vertical motion, one must
question the assumption of isotropy. Similar doubts ap-
ply to other postulated properties of the unresolved
scales.

What is required in an LES are the SGS Reynolds
stresses and the SGS convective fluxes

wu; and u0, (1)

where u; and 0 represent the fluctuating parts of the
subgrid-scale velocity and potential temperature fields,
respectively. Differential equations for the variables
(1) can be constructed using the Reynolds stress mod-
els, and a form of these equations is presented in ap-
pendix A of Canuto and Minotti (1993, cited as CM).
The dynamic equations for the second-order moments
(1) imply third-order moments for which one can de-
rive and solve the corresponding dynamic equations, as
indeed has been done (e.g., Andre et al. 1982; Canuto
etal. 1994). To fix the ideas, let us write the functional
dependence of the SGS functions (1) as
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wu; = f(Sy, Ry, Bile, €)

ng(st]a Rij’ ﬂi‘e’ 6), (2)
where we have defined
oU; oU; ou;, aU; orT
28, =—+—+, 2R, =— -+, =
Si Ox;  Ox 7 0x;  Ox Ox;
3

Here S;, R;, and ; are the strain rate, the vorticity,
and the temperature gradient of the large, resolved
scales and thus are known quantities, while e (turbulent
kinetic energy) and ¢ (the rate of dissipation of kinetic
energy) are turbulence variables that characterize the

unresolved scales. Only when the latter are expressed

in terms of the large scales will the SGS model be com-
plete. In engineering studies, it has been common prac-
tice for many years to employ two differential equa-
tions for e and ¢, the so-called K—e¢ model (K rather
than e is used as a symbol for the turbulent kinetic
energy). Could the same philosophy be applied here?
The differential equation for e [see CM, Eq. (6a)] pre-
sents no conceptual problems, since it can be derived
from the basic Navier—Stokes equations (together with
a reliable formulation for the third-order moments).
The real difficulty is the description of ¢, the rate of
dissipation of turbulent kinetic energy. While there is
an exact dynamic equation for € (Davidov 1961; Spe-
ziale 1991), it has been of little practical use since most
of the terms entering the equation are difficult even to
interpret physically, let alone to evaluate or model.
Such an equation has therefore never been solved as
such; rather, it has been used as a guide to construct a
differential equation for ¢ with adjustable parameters,
which is part of the aforementioned K- ¢ model [ Spe-
ziale 1991, Eqgs. (62c,d)]. In addition to its phenome-
nological nature, this equation has thus far been tested
only for unstable or, more often, neutral stratification.
This may have discouraged many people who have thus
preferred to suggest a variety of phenomenological ex-
pressions for € (Deardorff 1980; Weinstock 1981; Hunt
et al. 1988, 1989). The way these suggestions are usu-
ally made is not directly via a formula for e but equiv-
alently, through a length scale that is introduced in the
following way. The simplest model for (1) is the Kol-
mogorov—Prandtl-Boussinesq model, whereby one
simplifies (1) to the form

u_iu—; = f(slj9 0’ 0|e9 6)
H=g(09 O,ﬁile’ 6)- (4)

On the basis of dimensional arguments (see, however,
CM, appendix C), Eqgs. (4) yield
ui_u; = —2V1Sij> W = —Xtﬂi’

&)

where the turbulent viscosity v, is a combination of the
variables ¢ and e:
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2
e
v,=C,—
L

(6a)

which is the formula widely employed in the K—e¢
model. It is important to notice that second-order clo-
sure models predict for the coefficient C, the value

C, = 0.096-0.112, (6b)

close to the values suggested empirically by Rodi
(1984) and Schumann (1991). The same models also
predict an expression for the turbulent conductivity x,
of a form similar to (6a) with a value of C, = 0.178,
which is close to the empirical value C, = 0.172 (Schu-
mann 1991).

To the extent that one accepts the simplified forms
(4) and (5), Eq. (6a) is exact. The important point to
notice is that one has to deal with two independent
variables, be they

(6”2,7'_1), (7)

where 7 is a turbulence timescale ~ e/e. Recently,
Lang and Shih (1991) have discussed which pair of
variables in (7) is more suitable to describe an unstrat-
ified turbulent flow. Their conclusion is that the vari-
ables (e, ¢) are the more robust variables in the sense
that the differential equations describing them have a
wider degree of applicability requiring the least number
of changes of the adjustable parameters when consid-
ering different types of flows.

In the geophysical literature, the form (6a) is not
usually adopted. Rather, it has been customary to em-
ploy the variables (e, /), where the turbulence length
scale /. is defined as

(e, €), (e, T), (e, 7", or

(8a)

Since the differential equation for e presents no con-
ceptual problems, the discussion centers on the variable
I.. We may notice that in terms of (e, [,),

v, = Coe',. (8b)

From time to time, there have been suggestions to
translate the differential equation for ¢ into a differen-
tial equation for the length scale ., the work of Rotta
(1951) being the first on the subject. However, the lack
of guidance as to how to include stable stratification
into these equations affects both € and I, equally.

How can one derive a model for /.7 Let E(k) be the
turbulent kinetic energy spectral function, defined so
that the kinetic energy e of the subgrid scales (with
wavenumbers larger than the maximum resolved wave-
number k,, = n/A) is given by

e= f E(k)dk, 9)
/A

and let us assume that E(k) has a quasi-inertial form
(Lumley 1964)
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E(k) = Koe(k)**k "3, (10)

In a purely inertial region, (k) is, by Kolmogorov as-
sumption, independent of k. In stably stratified situa-
tions, this is no longer true, and thus we write, still
formally,

e(k) = f(k, S, Ble), (11a)

where § and B represent the dependence on shear and
buoyancy, while
€ = e(k— o)

(11b)

is the true dissipation rate of turbulent kinetic energy.
If one could construct the function (11a), use of it in
(10) and then in (9) would lead to a relation of the
form ‘

e=¢e(S,B, Ale), (12a)

which could be cast in the form of Eq. (8a) for ¢ so as
to finally obtain

IL.=1(S,B, Ale),
or, more compactly,
I, = I(Fr, Sh), (13a)

where Sh and Fr are the shear and Froude numbers,
respectively,

(12b)

(13b)
where

172
§?=128;S;, N= (g,.a 5&) . (13¢)
Here N is the Brunt— Viisild frequency, g; = (0,0, g)
is the acceleration vector due to gravity, « is the volume
expansion coefficient, and 9T/ 0x; is the mean potential
temperature gradient.
If one assumes that e(k) is inertial, e(k) = ¢, the
above procedure can easily be carried out with the well-
known result

2 3/2
= -1 = —_—
l.=c'A, c. 7r(3 Ko) s (14a)
where Ko is the Kolmogorov constant (~1.6).
We shall employ Eq. (8a) with )
l€ = C:ll (14b)

and express our result in terms of / with the condition
that in the neutral and shearless case, | = A.

As we have said, the lack of an a priori model to
compute / has prompted suggestions of empirical ex-
pressions for /. Of these, the most widely used are the
following.

In Deardorff (1980) the goal was to suppress a spu-
rious heat flux within the stable inversion layer in the
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planetary boundary layer (PBL) by decreasing [, with
stratification. The suggested form of / was

I/A = ¢ Fr (15)

with ¢ = 0.76. Deardorff ’s model has been widely used
in both SGS models and ensemble average models. On
the other hand, Deardorff (1974, Fig. 19) himself had
previously found from LES calculations that the dis-
sipation length scale L, defined in terms of the total
kinetic energy E (including all scales)

E}/2

L= (16)

€

increases with stratification within the stable layer. Us-
ing LES data, Moeng and Wyngaard (1989) and
Schmidt and Schumann (1989) confirmed that L. in-
creases with stratification, and Schumann (1991) has
commented that this increase of L, ‘‘contradicts the ex-
pectation which forms the basis of Deardorff’s pro-
posal.”’ It was also found (Schumann 1990, 1991) that
L. decreases with increasing importance of shear and
becomes larger for buoyancy-dominated stable layers.
The complex behavior of L. remained unexplained on
physical grounds.

Hunt et al. (1988, 1989) suggested that for shear
flow away from the boundaries, /. depends on S in the
following way:

B
Sh

with ¢ = (3/2A;) and A; = 0.46.

In Canuto and Minotti (1993), the SGS model was
based on the following physical argument. In the case
of stable stratification and in the buoyancy subrange of
the spectrum, the turbulent eddies work against gravity
and lose a fraction of their turbulent kinetic energy
(TKE), which is transformed into potential energy.
Therefore, less TKE is available to be transferred to the
inertial subrange and eventually to be dissipated by mo-
lecular effects. Furthermore, € decreases faster than e*?
with stratification, corresponding to an increasing ..
For Fr™' < 4, the model predicts

I = A exp(0.053 Fr?).

I = 17)

(18a)

The key assumption of this model is that the flux Rich-
ardson number R; for the SGS scales is very large; that
is, buoyancy dominates over shear. Here R; is defined
as the ratio between the destruction of TKE by buoy-
ancy and the production of TKE by shear; namely,

giau;6 _ __1_ 1
ww;S; o, (FrSh)?’

where o, is the turbulent Prandtl number. The problem
was to decide whether production by shear or destruc-
tion by convection vanishes first in the small-scale SGS
region of interest or, alternatively, what is their wave-

R = (18b)
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number dependence. It is clear, for example, that at
very high wavenumbers, when the small-scale eddies
are isotropic, the denominator in (18b) vanishes:

(18c)

on account of the incompressibility condition. This
suggests a large value of R, (if g;au;0 decreases less
fast). Stated differently, the assumption behind (18a)
was that the production by shear vanishes at lower
wavenumbers than buoyancy, so that by the time one
reaches the SGS wavenumber region, buoyancy de-
struction is more important than shear production. Re-
cent LES calculation by Kaltenbach (1992), however,
show that, as a function of wavenumber, buoyancy pro-
duction may actually vanish at lower wavenumbers
than shear production, thus leading to a small rather
than a large flux Richardson number.

The present paper addresses the problem of deriving
the dissipation length scale /, in stably stratified tur-
bulence as a two-parameter function /. (Fr, R;). In sec-
tion 2, we present the basic equations. In section 3, we
discuss the effects of different timescales (Lagrangian
or Eulerian) on /.. In section 4, we derive a length scale
model based on the formulation of the buoyancy spec-
trum B (k) of Shur (1962) and Lumley (1964 ). In sec-
tion 5, we discuss Weinstock’s formulation of B(k) and
give a corresponding length scale model. In section 6,
we discuss our formulation of B(k), which improves
over both Lumley’s and Weinstock’s formulations, and
derive a more complete model of the dissipation length
scale /.. In section 7, we discuss the behavior of our
expression for /., and show how previous expressions
for I. suggested by Deardorff, Hunt et al., Weinstock,
and Canuto and Minotti can be recovered naturally
from the more complete model. In section 8, we discuss
the physical meaning of the reference length A. In sec-
tion 9, we apply our model to a shear-driven PBL and
derive /. as a function of height. We show that the result
of our model closely reproduces the well-known LES
result. An alternative form of the energy dissipation
rate € is discussed in section 10. Discussions on the
model and its role in both ensemble average and LES
calculations will be presented in section 11.

TuJS,, - 66[jS,-j . eS,-,- = 0

2. Basic equations of the model

Following Phillips (1965) and Weinstock (1978),
we study the balance relation for the kinetic energy
spectrum E(k) in the buoyancy—inertia subranges in
the wavenumber space under the assumptions that 1)
the variation of E(k) due to the transfer in physical
space by the turbulence itself is negligible and 2) the
contribution of the molecular term is negligible. The
resulting equation is

OE(k) Oe(k)
ot ok ’

where P (k) and B(k) are the spectra of shear and buoy-

= P(k) + B(k) —

(19a)
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ancy productions, respectively; B(k) < O for stably
stratified flows. Lumley (1965) assumed that (Panof-
sky and Mares 1968; Wyngaard and Cote 1972)

_1
Ry
where R; is defined in Eq. (18b). In order to parame-
terize the time variation of e at different Richardson
numbers, Schumann (1992) introduced a growth-rate
parameter in physical space. Similarly, we introduce a
growth-rate parameter for E (k) in spectral space
_ P(k)
Oe(k)/ 0k — B(k)

and leave it to be parameterized. Equations (19a)—
(20a) yield

P(k) =~ B(k), (19b)

(20a)

Oe(k) _ (1 1 (20b)

T - &—E)B(k).

In the stationary limit, G = 1, while in neutral flows,
G > 1. In Eq. (20b) we can rewrite G as

1
=—, (21a)
R;.
where R, is a critical value of Ry, so that
de(k) R;.
——F={1-—|B(k). 21b
ok ( R, (k) (21b)

For ensemble average models, R, is always below R,
in order to balance the e budget equation; for SGS mod-
els, however, Ry may exceed R;. since additional kinetic
energy may be cascaded from scales larger than the grid
size.

Let us now consider the buoyancy spectrum B(k).
Since the physically relevant ingredients are the exter-
nal timescale represented by the Brunt—Viisald fre-
quency N, the internal turbulence timescale 7, and the
turbulent kinetic energy spectrum E(k), we can write

B =B(N, 1, E). (22a)
As shown in appendix A,
B(k) = —N*7E(k). (22b)

First, by its very nature, 7 is a Lagrangian and not
an Eulerian timescale. In spite of much work on the
subject, calculations of Lagrangian variables are still
the object of some controversy (Saffman 1963; Kraich-
nan 1970; Riley and Patterson 1974; Tennekes 1975;
Yakhot et al. 1989; Chen and Kraichnan 1989; Nelkin
and Tabor 1989; Gotoh and Kaneda 1991; Kaneda and
Gotoh 1991; Gotoh et al. 1993). The general conclu-
sion, however, is that in 3D turbulence, Lagrangian
timescales are in general larger than Eulerian time-
scales and that the most appropriate definitions are as
follows:
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Tg' = ke'? (23a)
k 172 .
T = (f sz(p)dp) (23b)
0
with
> Te. (23¢)

Second, whichever T one chooses in Eq. (22b), one
must account for one more fact: in the presence of sta-
ble stratification, 7 is a function of the Brunt—Vaisali
frequency (Weinstock 1978),

T = 7(N). (24)

The physical reason behind this assertion is that under
conditions of stable stratification, eddies lose Kinetic
energy by working against gravity; the energy absorbed
from the particle motion corresponds to spontaneous
emission of a gravity wave.

3. The effect of the timescale 7 on /.: Eulerian
versus Lagrangian

In order to exhibit the effect on /, of choosing either
7L or Tg, we proceed as follows. Substitute Eq. (22b)
into Eq. (21b). After using (10) and integrating, one

obtains
Ry,
%)
3

k) _
[ ]

1
= [1 + = Koe“”Nz(l
€ 3
which is valid for any 7. Furthermore, using Egs. (9)
and (8a), we derive

Y 2/3
125 = Kof kﬂ[ﬂ] dk.  (25b)
. T/A €

(25a)

Inspection of (25a) shows that if R, < Ry, the larger
the 7, the smaller e(k)/e will be, and conversely if R,
> R;.. Because of (23c), we conclude from (25b) that

(i) R <Ry

I(L) < L(E) (26a)
(i) R, > Ry,

I(L) > I(E), (26b)

where the symbols L and E stand for Lagrangian and
Eulerian, respectively. Relations (26) indicate that al-
though in general 7, > 7g, (L) may be larger of
smaller than [(E) depending on the value of the flux
Richardson number.

4. Lumley’s formulation of B(k)

Lumley (1964) neglected the 7 dependence on N but
accounted for the Lagrangian nature of 7. Using (23b)
and (10), one derives
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3 —1/2
T~ (ZKO) 6(k)—l/3k—2/3 (273)

so that (22b) yields

1/2
B(k)=—2(§K0> N2%'3(k)k~73,  (27b)

which is Lumley’s result except for a numerical factor.
The result is also derived in a more formal manner in
appendix A. Using Eq. (27b) in (21b) and integrating
from k to infinity with € = e(), one obtains

B . 1 1/2 Rfc (kO 413773/2
e(k)—e[1+(§1<o) (1—Rf (‘k ,
(27c)

where kg is the Ozmidov wavenumber

3\ 172
ko = <N_) .
€

From Egs. (10) and (27c¢), it follows that for R, > R;.,

k3, k<ko (28a)
E(k) =
k7, k> ko, (28b)

(27d)

and thus ko separates the ‘‘buoyancy subrange’’ (28a)
from the ‘‘inertial subrange’ (28b).

Inserting (27¢) into (10) and the result into (9), one
can obtain relation (12a), which when cast in the form
(8a), yields the following expression for the length [/

-3/2

l= A[l — (27n%3)~! Kom( - I;—f;) Fr"z]

(28c)

The lack of the dependence on buoyancy of the time-
scale 7 makes the application of this expression doubt-
ful in the case of strong stratification. In the case of
weak stratification, however, the formula ought to ap-
ply. In fact, in the case

N>—-0,R;— 0, (28d)
use of expression (18b)
1 1
Ri=—— 28
/= &, (Fr Sh)? (28¢)

yields _
UA = [1 + (2n%3)™ Ko*?R;.0,0 Sh?] ™2,  (28f)

where o0,y is the turbulent Prandtl number in the absence
of stratification. The same result is also derived from
our more complete model in the neutral limit [see Eq.
(41a)]. It will be shown later that for intermediate val-
ues of Sh, Eq. (28f) reproduces the empirical expres-
sion of Hunt et al. (1988, 1989).
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In conclusion, even when Lumley’s original model
is extended to include R;, the final expression for [, is
acceptable only in the case of weak stratification.

5. Weinstock’s formulation of B (k)

Weinstock (1978) assumed Eq. (23a) but accounted
for the N dependence (24 ). The choice of an Eulerian
timescale is discussed in appendix A. The main con-
tribution of Weinstock’s work is to have pointed out
the importance of buoyancy effects on the timescale 7.
Indeed, a recent application of a second-order closure
model to the PBL has shown that the use of 7 = 7(N)
considerably improves the behavior of the dissipation
€ when compared with LES data (Canuto et al. 1994).
Since the intermediate steps to derive the 7 = 7(N)
dependence are somewhat complicated, they are repro-
duced in their essence in appendix A, while the details
can be found in the original paper. The final result,
however, is simply represented by the fact that, as ex-
pected, buoyancy affects the turbulence timescale 7 in
such a way that

-
= .
1+ 72N?
The effect of buoyancy is that of adding the term 72N>
in the denominator, which physically represents ‘‘en-
ergy absorbed from the particle motion’” (Weinstock
1978), a damping factor quite common in similar sit-

uations in plasma physics. Using Eq. (23a), we obtain
from (29a) that

T (29a)

e 172 k
T=—,
ek* + N?
which is indeed Weinstock’s expression except for a

numerical coefficient (6/5) in front of N2. Thus, the
buoyancy spectrum (22b) has the form

(29b)

-1
B(k) = —(3/2)”2aN2E(k)e”2k[ek2 + gNZ] ,

(30)

where a is an anisotropy factor to be discussed later.
Inserting now Eq. (30) into (21b) and carrying out
the integration yields

e(k) = e[l +(5/6)"* Ko

& @_ 2/3 3
X (1 - Rf><k3) C(k/kg):l , (31a)

kgA = (6/5)'* Fr". (31b)

The k dependence of e(k) is entirely contained in the
function C(x), defined as

where

—2/3

Cx) = f a(n) 7 —dn.

(31c)
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Based on some earlier experiments on tropospheric
and stratospheric spectra, Weinstock (1978) approxi-
mated the anisotropy factor a in Eq. (30) as

k< kg

a(klkg) =

1
2 (31d)
17

k= kg,

which has a discontinuity at k = k. We propose instead
the following form:

kikg, k< kg

(31e)
1, k = kg,

a(klkg) = {

since it is the simplest form that reflects the fact that
a(k/kg) continuously decreases with decreasing k/kg
for k < kB'

Following the procedure outlined before, we substi-
tute Eq. (31a) into Egs. (10) and (9) to obtain Eq.
(12a), which is then cast in the form of Eq. (8a). The
result is Eq. (B2) of appendix B. Since such an ex-
pression is too unwieldy, we have devised a simpler
expression that approximates very well the result (B2):

l.=c7l, (32a)

1 02 172 Q -3
— = - —_——_— 2b
A [(1 (a, + Fr2)2> a; + Frz] (32b)

Ry.
Qsa1<1 —R—’;) (32¢)
a, = 8.68 X 102 Ko*?, a, = 0.025, a; = 0.014,
(32d)

where Fr is the Froude number defined in Eq. (13b).
In the limit of weak stratification, N2 — 0, Eq. (32b)
yields, using the second of (18b),

l
=01 =p>sh")" + psh?]™  (33a)
P = alRchro, (33b)

where Sh is the shear number defined in Eq. (13b), and
0,0 1s the value of the turbulent Prandtl number in the
neutral limit. Equation (33a) can be compared with Eq.
(28f), which is based on Lumley’s B(k). Clearly,
(33a) is limited to shear number less than

Sh < p~'72, (33¢)

In this region of validity, it is easy to verify that Eqs.
(33a) and (28f) satisfy the general relation (26a).

In the presence of buoyancy, the length scale model
Eq. (32b) based on Weinstock’s B(k) can be more re-
alistic than Eq. (28c) based on Lumley’s B(k), since
(32b) accounts for the important buoyancy effect on
the timescale, while (28c) does not. In the absence of
buoyancy, on the other hand, (28c) can be more phys-
ical than (32b) since (28c) is based on a Lagrangian
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timescale, while (32b) is based on an Eulerian time-
scale.

6. New model

Starting from the buoyancy spectrum expression, Eq.
(22b), we have presented two models of I, for stably
stratified turbulence. In the first model (section 4), a
Lagrangian timescale was employed in Eq. (22b), but
the effect of buoyancy on the timescale was not con-
sidered; in the second model (section 5), the effect of
buoyancy was appropriately accounted for, but the
timescale employed was Eulerian. Neither model is
thus complete. A model that includes both 7, and the
stratification dependence of 7 will be introduced
below. :

Under the approximation of local inertiality, the La-
grangian timescale defined in Eq. (23b) becomes

3 —-1/2
T = (Z Ko) e(k) ™2k, (34)

We rewrite Eq. (29a), which has been designed to in-
clude buoyancy effect on the timescale, as

TL
1+ 7N

Then we insert Eqs. (34), (35), and (22b) into Eq.
(21b). The resulting differential equation can be inte-
grated analytically with the following resuit:

(35)

T

-£
(k) = e[l + 3% QNZe(k)'mk"‘”] . (36a)

where

2 R - 1). (36b)

Now we use Egs. (36a—b) in Eq. (10) and then inte-
grate Eq. (9). The resulting e is then used in Eq. (8a).
The ensuing expression for /. is

I.=cl'l,

(- Lo

2/3 ~2£/3
f=[1+27r‘ZQFr'2<£> f—‘yz] . (37¢)

(37a)

where

(37b)

Note that the right side of Eq. (37c) contains both I/A
and fitself. Therefore, //A can only be solved numer-
ically from Egs. (37b) and (37c). We have nonetheless
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found that the following algebraic expression approx-
imates very closely the exact solution:

!
= [l +aFr2(1 + b Fr™*?)"']~,

z (38a)
where
R <Ry a=2(3r)""(Q-1),
3 4/9 3
b= 0.12<Q -1+ EQ"') , €= > (38b)
Rf> Rfc: a = 4(57r2)—lﬂ, b= 0,
¢ =§(1 - 0"), (38¢)

and (2 is given in Eq. (36b). The comparison between
Egs. (37b) and (38a) is presented in Fig. 1. Since (38a)
reproduces (37b) very well in wide ranges of the two
parameters (Fr, R;), we suggest the use of (38a) as the
new dissipation length scale formula. The new, two-
parameter (Fr, R;) model reflects the combined effects
of buoyancy (sink of short scales) and shear (source
of short scales) on the TKE dissipation length scale.
In summary, the new model predicts that (Fig. 1)

decreases if R <Ry
l { < Ry (39)

— with stratification

A | increases if R;> Ry..

7. Recovery of previous models

Previous formulas for [, or ¢ by Deardorff, Hunt et
al., Weinstock, and Canuto and Minotti can be shown
to be special cases of the present model.

20 l
2 [ |
A
L 2 e ]
1.5~ ] —4
i 1.1,
1
1.0
v\ 0.8
i ' AAAAAAAA 1
' . T EEEEE Ty —
I ]
0.3 :
0_1 ........... —
v ® ’
X

FIG. 1. The normalized dissipation length scale {/A according to
the present model equations (37b—c) (solid lines), and according to
the algebraic equation (38a) (dotted lines ), versus the inverse Froude
number Fr~' = ANe~'’2, for the normalized flux Richardson number
R/R;. =0.1,03, 05,08, 1, 1.1, 2, and .
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FiG. 2. Plot of A/l vs Fr™' = ANe™'"?. Curve 1: Eq. (38a) with
R¢/R;. = 0.1; curve 2: Eq. (38a) with R/R;. = 0.14; curve 3: Eq.
(38a) with R/R;. = 0.18; curve D: Eq. (15), Deardorff s model
(1980).

a. Deardorff’s formula (1980)

For R, < Ry and large Fr~', the model equation
(38a) can be approximated as

25 (cFr)™,
l

where c is dependent on R,/ R;. and Ko. Equation (40a)
indicates that A/! increases linearly with Fr~'. This is
in agreement with Deardorff ’s (1980) expression, Eq.
(15):

(40a)

% =(cFr)™', ¢=0.76. (40b)
While Deardorff ’s constant ¢ has no formal justifica-
tion, however, the present model suggests that ¢ is a
function of R;/R;. and Ko. For Ko = 1.6, R/R;. ~ 0.15,
and for 1 < Fr™' < 10, the two constants nearly co-
incide. In Fig. 2 we plot A/I versus Fr™' according to
both Deardorff’s model and the present model, Eq.
(38a). Furthermore, it must be noted that for small
buoyancy (Fr~' — 0), Deardorff ’s I/ A diverges, while
the present model predicts [ = A, which is the correct
physical limit.

b. Hunt et al.’s formula (1988, 1989)
In the neutral limit (Fr~' — 0, R;— 0), Eq. (37b) or
(38a) reduces to

= (1 + p Sh?)™2 (41a)

Bl~

p = (2372 Ko*?R;. 0, (41b)
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where Sh is the shear number defined in Eq. (13b) and
0.0 18 the neutral value of the turbulent Prandtl number.
In Fig. 3, we plot A/l according to Eq. (41a) together
with Hunt et al.’s model, Eq. (17). For intermediate
values of Sh, the present model result nearly coincides
with that of Hunt et al. However, as Sh — 0, the Hunt
et al. I/A diverges, while in the present model [/A —
1, as expected.

c. Weinstock’s formula (1981)

For Ry = 0.5R;,, one can estimate from Fig. 1 that

A/l ~ 04 Fr ', (42a)
which, using Eqgs. (8a) and (14b), leads to
€ ~ 0.4ceN ~ 0.5wN. (42b)

In the last step, we have approximated e¢ by 3/2w?.
Equation (42b) was analytically derived by Weinstock
(1981) for stably stratified flows and is consistent with
stratospheric data.

d. Canuto and Minotti’s formula (1993 )

For R, > R;. the present model, Eq. (38a), reduces
to (for Ko = 1.6)

Lo+ 001 By,

X (43a)
For small Fr~', (43a) further reduces to
é =1 + 0.089 Fr2. (43b)

This result of // A should be compared with Eq. (18a),
which was based on an Eulerian timescale. We can no-

~p

2 4 — ]
e AS
e”Z
FiG. 3. Plot of A/l vs Sh = A Se™"2 in the neutral limit. Curve

1: Eq. (41a) with R;. = 0.4; curve 2: Eq. (41a) with R;. = 0.5; curve
H:Eq. (17), Hunt et al.’s model (1988, 1989).
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tice that for Fr~! < 4, (43b) and (18a) satisfy the gen-
eral relation (26b).

8. The reference length A

In SGS models, A is the grid size corresponding to
the smallest resolved scale defined in Eq. (9). In Dear-
dorff ’s formulation, Eq. (15), A was referred to as the
length scale under neutral condition, but we have seen
from our discussion that it is more appropriate to refer
to A as the dissipation length scale under neutral and
shearless conditions. Under these conditions, the TKE
simply cascades through a purely inertial range to the
dissipation scales. The length scale / is equal to A only
under neutral and shearless conditions. In general, how-
ever, when there is buoyancy and/or shear, / does not
equal A, but is given by Eq. (38a).

In ensemble average models, following the argument
given by Lumley (1964), we assume that the Reynolds
number is so large that the spectrum E(k) can be ap-
proximated as rising sharply from zero at 7/A. In other
words, the buoyancy—inertia subranges can be re-
garded as having been extended to the largest scales.
Here A is, in general, a function of space coordinates
and may be affected by the boundaries and by nonlocal
phenomena. The main purpose of the present model is
to give the dependence of / on buoyancy and shear, or,
in other words, on how far and along which direction
[ deviates from A because of buoyancy and shear forc-
ing; A itself needs to be prescribed from outside the
* model (the same occurs in Deardorff and Hunt et al.’s
models). In the planetary boundary layer (PBL), A is
of course a function of height.

9. Application of the present model to the PBL

Recent work of Moeng and Sullivan (1994 ) provides
us with the latest LES data in a shear-driven PBL with
a capping inversion. These data are ideal to test the new
model of [, since both the turbulent transport and the
pressure transport (in physical space) are negligibly
small in the shear-driven PBL. The LES data give the
vertical profiles of the mean potential temperature
T(z), the TKE E(z) as contributed by all the scales,
the shear production P(z), and the buoyancy produc-
tion B(z). From these data, we constructed the flux
Richardson number Rq(z) = —B(z)/P(z) and the
Froude number Fr(z) = E(z)"?/[A(z)N(z)], where
N(z) = [gT(z)7'dT(z)/dz]'* is the Brunt—Viisild
frequency and A(z) will be prescribed in the caption
of Fig. 4.

Substituting the resulting Fr(z) and Ry(z) into the
present model [Eq. (38a)], we obtain I/ A as a function
of [Fr(z), Ri(z)], which is plotted as a two-parameter
diagram in Fig. 4, where the points A, B, ... and [
denote successive heights from the ground in the PBL.
From Fig. 4 one can see that /A is a nonmonotonic
function of height.
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Using the same LES data for the shear-driven PBL,
we constructed a dissipation length L, defined as in Eq.
(16),

L(LES) = E*?(z)/e(z). (44a)

On the other hand, using the model equation (38a), as
we have done in Fig. 4, we also constructed L (model)
defined as follows:

L{(model) = ¢ 'l[Fr(z), R{(2)], (44b)

where the input parameters Fr(z) and R/(z) were again
obtained from the same LES data. In Fig. 5 we plot
both L(LES) and L.(model), normalized by the PBL.
depth Z;, versus z/Z;. As one can see, our model re-
produces rather closely the LES vertical profile of L,.

Neither Deardorff s model nor the Hunt et al. model

~ can explain the LES L, versus z curve, whose non-

monotonic behavior has been found in all LLES calcu-
lations, beginning with the one by Deardorff (1974,
Fig. 19) and more recently by, for example, Moeng and
Wyngaard (1989) and Schmidt and Schumann (1989),
as well as by field measurements (Jochurn et al. 1990).
The underlying reason for this failure is that both mod-
els tried to determine the behavior of L, using only one
variable, either Fr or Sh. On the other hand, we have
seen that our model, Eq. (38a), calls for the presence
of two variables, Fr and R, (or Fr and Sh). The physical
explanation of the complex profile of L. offered by the

E"

FiG. 4. Plot of I/ A, as given by Eq. (38a), vs ANe ~'/* for different
values of R,/ R, = 0.0032, 0.026, 0.24, 0.6, 0.63, 0.66, 0.71, 0.8, and
0.96. Superimposed are nine representative points (A, B, ...,and )
in order of increasing z from the ground. The locations of these points
in the (Fr~', R/R;.) plane were determined using the LES data of
Moeng and Sullivan (1994) discussed in the text. The value of R,
is determined as 0.43 in accordance with Fig. 3. The reference length
A in the definition of Fr is a function of height z (section 8) and is
simply prescribed as A = 3z for z/Z; < 0.4 and A = constant for z/
Z; = 0.4, where Z, is the PBL depth. This figure shows how / deviates
from A due to the combined effects of buoyancy and shear and ex-
hibits a nonmonotonic behavior as a function of height in the PBL.
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FiG. 5. This figure refers to the same shear-driven PBL as in Fig.
4, and the letters A, B, C, ..., and I denote the same successive
heights as in Fig. 4. Here /., normalized by the PBL depth Z;, is
plotted as a function of the normalized height z/Z; according to the
present model [Eq. (38a), thin solid line] and according to the LES
result (thick solid line). The S-shaped vertical profile of /., which
has been evident from LES calculations and field measurements, is
well reproduced by the present model. Also plotted is the reference
length scale A (normalized by ¢.Z;, dashed line).

present model can be seen clearly by comparing Fig. 4
and Fig. 5: Eq. (38a) tells that L, decreases as Fr™!
increases if Ry < Ry, is fixed; on the other hand, L.
increases as R; increases if Fr™' is fixed. Since in the
PBL, both R; and Fr~' vary with height, L. may de-
crease or increase depending on the combined effect of
Fr~! and R, (the points A, B, ..., I represent suc-
cessive heights from the ground in both Figs. 4
and 5).

10. An alternative form for €

It is possible to obtain an alternative form of the
dissipation rate e that does not directly involve the tur-
bulent kinetic energy e. Integrating Eq. (21b) from &
= k,, = m/A to k = », we obtain, with the aid of Eq.
(A1),

€ — e(kn) = (1 - Rff)gam; (45)
R,

e( k,,) may be obtained by solving Eq. (36a) iteratively,
as a function of N, A and R;R;!. Thus, € according to
Eq. (45) may be expressed as a function of N, A,
R:R7!, and the vertical heat flux w#é, so it may be use-
ful in those turbulence models where wé is given or
solved prognostically.

11. Summary and discussion

We have presented a new model for the turbulent
kinetic energy dissipation length scale /.. The model
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was derived using the solution of the turbulent kinetic
energy spectral equation, Eq. (21b). The buoyancy
spectrum entering such equation was constructed using
both a Lagrangian timescale and the effect on it of sta-
ble stratification. Both shear production and buoyancy
destruction in the buoyancy-inertia subranges were
considered. The model contains substantial information
concerning the dependence of the length scale /. on the
combined effects of shear and buoyancy. The main re-
sults can be summarized as follows.

1) For R; < Ry, stratification and shear (separately)
decrease /..

2) For Ry < Ry, the model embodies Deardorff s
expression as a special case.

3) For R, = 0, the model embodies the Hunt et al.
expression as a special case.

4) While Deardorff’s model considers only buoy-
ancy and the Hunt et al. model considers only shear
and both models are not valid for small buoyancy or
shear, the present model considers the combined effects
of buoyancy and shear. The length scale in the present
model naturally approaches its physical limit, A, as
both buoyancy and shear vanish, whereas in the Dear-
dorff or Hunt et al. model, it does not.

5) For larger values of Ry (=~0.5R;.), the present
model encompasses Weinstock’s analytic expression
for e.

6) For R;> Ry, asituation which may occur in SGS
models, /. increases with stratification; for R, > R,., the
model encompasses (qualitatively) Canuto and Mi-
notti’s model.

An alternative form of the dissipation rate ¢ [Eq.
(45)] is also discussed that may be useful when the
vertical heat flux is solved prognostically.

The present formulation of the dissipation length
scale applies to both SGS models and ensemble aver-
age models. We applied the new model to the PBL and
found that the dissipation length scale obtained from

. the model reproduces the nonmonotonic behavior of

the length scale exhibited by all LES calculations since
1974, as well as by recent field measurements.
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APPENDIX A
Derivation of Eq. (22b)

The definition of the buoyancy spectral function
B(k) is defined so that (Weinstock 1978)
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fB(k)dk = gawd, (A1)

where w is the vertical velocity fluctuation and € is the
temperature fluctuation. By definition,

B(k) ~ gatszdﬂfdpw(r’, No(r, 1)

X exp(—ik-p), (A2)

where dQ is the solid angle and p = r — r’. Since by
integrating the temperature equation one has that 0 is
given by (T is the mean temperature)

Nr,1)=— (Z%J; dt'w[R(t'),t —t'] (A3)

R(t)y=r+ f’ dt'v(R(t"), 1), (A4)
0

one has to contend with the ‘‘Lagrangian trajectory’’
R(?) of a particle at time #, given that the particle was
at the position r at time zero. The correlation wé that
enters (A2) can be written, with the help of (A3), as

w(r’,)é(r,t) = — g—: 0J‘dr(,dt’

Xw(r', Hw(ry, t — t")6[R(t") — gl (AS)
or
w(r’, Dé(r, 1) = — QZRL(t), (A6)
0z

where R; is the Lagrangian correlation function. At this
point, one makes the so-called independent approxi-
mation (Corrsin 1960; Saffman 1963) whereby

R, (1)

= f fdrodt’w(r’, Hw(rg, t — t")6[R(t') — 1p].
0
(A7)

Next, one employs the standard definition of the Eu-
lerian spectrum S(k, ¢); namely,

Sk, 1) = fdpw(r’, Hw(xy, t —t') exp(—ik-p),
| (A8)
where
Sk, 1) ~w*k, Ow(k, ) = w*(k, 0)w(k, 0)
X ®(k,t) ~ k2E(K)®(k, t). (A9)

Combining the above expressions, one obtains that Eq.
(A2) has indeed the form (22b) where 7 is the result
of a complicated integration
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IEfdt’(I)(k,t’)(exp[ik-AR(t")]), (A10)

where
(exp[ik-AR(#)])

= —f dp(S[R (1) — xo]) exp(ik-p), (All)

where p = r — 1, (for ease of notation in dealing with
exponentials, we have changed the notation from A
to (A)).

The physical difference between the Shur—Lumley
and Weinstock models lies in the evaluation of the in-
tegral 1. If the function ®(k, ?) is taken from EDQNM
(Lesieur 1991), we have

Bk, 1) ~ TR~ T, (A12)
with
771~ (k) = v,(k)k?, (A13)
where v,(k) is the turbulent viscosity. Since
vi(k) ~ €' (k)k", (Al14)
it follows that
77~ e (k)k*, (A15)

which we recognize' as a Lagrangian timescale by in-
spection of Eq. (23b). Finally,

B(k) ~ K°C(k) ~ E(k)I(k)
~ kT E(R)w; (k) ~ ek,

which is the Shur—Lumley result (27b).

On the other hand, Weinstock (1978) did not employ
(A12)but Kraichnan’s (1959) result ( see also Saffman
1963)

(A16)

Bk, 1) ~ e~ HARDID (A17)

which he generalized to include buoyancy as follows:
Dk, 1) ~ eme—u2<[k~ARm]2), (A18)

where the frequency w is a solution of a nonlinear dis-
persion relation.

Before we discuss the buoyancy dependence due to
w, we recall that the main reason Kraichnan’s DIA did
not yield the Kolmogorov spectrum k~*’* but rather
k™*? is precisely because of the use of an Eulerian
rather than a Lagrangian timescale. Since Weinstock
adopted Kraichnan’s result for ®, the lack of Lagran-
gian timescale persists in his calculations.

The major contribution of Weinstock’s work is that
he pointed out the importance of the buoyancy effect
on 7 and carried out an explicit calculation. Physically,
it seems clear that w in Eq. (A18) ought to be of the
order of the Brunt—Viisdld frequency N, and indeed
the more exact result is
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k.
w=w = N,
where w, is the gravity wave frequency and k, is the
horizontal component of k. In principle, one could
write the function ®(k, ¢) in the general form

Bk, 1) ~ e, (A20)

where k, is the vertical component of k and z is the
height. In the case of gravity waves, w is real, while
the wavenumber k, is complex k, = Rek, + if3; in the
absence of nonlinear damping, § = 1/(2H), where H
is the pressure scale height. Thus, one concludes that
gravity waves grow in space as exp(z/2H), a well-
known result. If, on the other hand, one accounts for
nonlinear damping, one can achieve saturation, 3
= 1/pH — (nonlinear damping) = 0. This holds true in
the absence of turbulence. When the latter is included,
the frequency w is no longer real but

(A19)

w=w, + id, (A21)

where the damping factor d is responsible for the ex-
ponential in (A17).

Using the fact that for an approximately Gaussian
random field, the exponential entering Eq. (A17) can
be written as

(expik-AR(H)])

~ exp{— %([k-AR(r)m} ; (A22)
the final form of the integral I is given by
fdt’ exp{iwgt’ — ([k-AR(¢')]*)}

_ 3 3/2 e—ll2k—l
“\2) 1+ (6/5)N*ek?”

(A23)

Using now the definition (23a), we obtain that the
right-hand side of (A23) can be written as '

e
1 + (Nrg)?’

which shows that Weinstock’s timescale fully accounts
for the dependence on buoyancy but uses an Eulerian
timescale 7.

As pointed out by a reviewer, Weinstock made a
Lagrangian correction to the timescale, but in a differ-
ent context (Weinstock 1991). He suggested that Eq.
(A23) be modified to account for the Lagrangian effect
{1993, personal communication).

T =

(A24)

APPENDIX B
Derivation of Eq. (32b)

In analogy with Weinstock (1978), for ease of com-
putation, we first approximate the function C({) in Eq.
(31c) as
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BEEI
4 0262 " 27
cw =4, (B1)
(3) o= ¢>t

Using Eq. (B1) we substitute Eq. (31a) into Eq. (10)
to find the energy spectrum E(k) and then integrate
E(k) from K,, = w/A to infinity to find e according to
Eq. (9). The expression of e so obtained can be cast in
the form of Eq. (8a). After some algebra we obtain

/
l.=c'l, A= [(1 = 8,76
— 67" sgn(1 — R;/R)1™* (B2)
2
6, = (‘15—8) Ko™(1 — R;/R)) (2 IT*(L,)  (B3)
6 =202 IRGIRG) — 1 (B4)
5 1/2
Cn = knlkg = (3) ne'?/(NA) = 2.87 Fr  (B5)
L(C) = L C"(myn~>"dn. (B6)

Equations (B1)—(B6) form an expression for the
turbulent kinetic energy dissipation length scale I,
based on Weinstock’s formulation of the buoyancy
spectrum. Aided by asymptotic analysis of the integrals
I, and I, in Eq. (B6), a much simpler algebraic ex-
pression that fits Eq. (B2) very well is found and pre-
sented in the text as Eq. (32b).
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